Ceramic Hobby Develops Into Thriving Business

Five years ago Stanley and Elizabeth Synar were living quietly on their cattle ranch near Warner, Oklahoma. Stanley was busy building up his herd of prize cattle, but energetic Elizabeth, with only her husband, baby daughter and small home to care for, found time on her hands. Stanley, understanding this and recognizing her artistic talents, gave her $300 for Christmas to finance some hobby.

After looking around, Elizabeth decided ceramics was just the thing for her. She bought some moulds and clay and a place to sit, but patiently, he put up with the clutter and encouraged his wife's pursuit of her hobby—until one night about 1 a.m. he got up to get the baby's bottle from the kitchen. Alas! it seemed the barrel that held the mixed clay had sprung a leak, and the kitchen floor was covered with two inches of sticky, slippery cold mud.

Stanley groped in the dark, slipped, skidded and went down on his back. The rest of the night was spent shoveling mud from the floor, and even then, Stanley was understanding. He merely told Elizabeth to get the stuff out of the house, and promised to fix up the smoke house for her to work in.

Soon the house was filled with ceramic figurines of all kinds, plus the machinery that went along with the art. Many times when Stanley came home there was hardly a place to sit, but patiently, he put up with the clutter and encouraged his wife's success because they were original and because no two customers ever received the same design. She began to mould vases especially designed for arrangements of certain flowers, such as the S-shaped bowl created for a Florida gladiola grower.

Synar Ceramics is now located in a large hangar at the air field. It employs 30 people and has customers from 36 of the 48 states. Plans call for a 15,000 square foot plant and retail outlet building.

Perhaps the most unusual feature of the operation is the fact that Elizabeth both creates her own designs and trains all the personnel. From two pounds of clay mixed five years ago in a washing machine, the operation has increased to 600 pounds of clay processed in modern, up-to-date machinery, valued at $30,000.

Our Cover

It doesn't snow often in Oklahoma, but when it does the scenes created are just as beautiful as can be found anywhere. Oklahoma City's recent snowfall provided the setting for this month's cover picture, taken by Kazimir Petrauskas at Lincoln Park, northeast of the city.

Nancy Brown, production manager, sprays fleck, a felt-like covering, on the bottom of a vase. Miss Brown is from Webbers Falls.
Industry from Mineral Wealth

This month a cavernous hillside in Sequoyah county will observe the first anniversary of the initial incisions made into its crust. And the St. Clair Lime Co. will continue to extract more than 1000 tons of limestone daily from the cave, the only limestone mine in Oklahoma.

The St. Clair company produced limestone by the open quarry method until last January when the mine was opened. The mine is located adjacent to the company's stone preparation plant in Marble City, 12 miles north of Sallisaw. The tunnel, reaching 500 feet into the hillside, is 30 feet high and 60 feet wide. Seven side tunnels, each 55 feet wide, branch out from the main tunnel.

General manager of the St. Clair company, which employs from 90 to 100 persons, is Homer Dunlap. General offices are in the Home State Life building, Oklahoma City.

The company's products, limestone, quicklime and hydrated lime, are distributed nationally, with the bulk of shipments going into the southwest.

Limestone, or calcium carbonate, is abundant in Oklahoma. Chemical grade rock is quarried and mined by the St. Clair company for lime burning, for use as flux in glass manufacturing, and for agricultural and other uses.

The St. Clair company organized in 1932 and built a lime plant at Fort Towson. At the time of its discontinuance in 1935, the Fort Towson plant had a capacity of 20 tons a day. The company built another plant in Oklahoma City in 1935, when cheap fuel was available in that area. It was maintained until 1942 and had a capacity of 40 tons a day.

In 1939, a lime plant was built by the company near Sallisaw. Today it has a capacity of 250 tons a day. There, carbon dioxide is removed from the limestone by calcining at temperatures above 2200 degrees Fahrenheit. The result of the calcining, or heating, process is calcium oxide, variously known as lime, quicklime, burnt lime and calc.

Principal uses of quicklime are in the manufacture of aluminum, steel and copper, and in the purification of water. It is also used extensively in the manufacture of paper and of calcium carbide, a greyish-black substance used in the generation of acetylene gas.

Quicklime is white and consists of hard, unstable lumps, which gradually crumble on exposure to moist air. The end product of the process of hydration of limestone is calcium hydroxide, also known as hydrated lime and calcium hydrate.

Calcium hydroxide is stable. Its varied commercial uses include oil refining, water purification, and the manufacture of mortar, cements and calcium salts. It is also used as a base for poisonous sprays.

In addition to quicklime and calcium hydroxide, the St. Clair company prepares limestone for use in glass manufacturing, for agricultural purposes, and for use in sewage disposal plants.

Above left—Railroad tracks lead to the rock unloading point and the hydrating plant. A tramway leads to the top of the four kilns.
Left—A truck carries finely crushed limestone for use in making the hard surfaced quarry floor into the mine.
Above—The kilns, 65 feet tall, are called induced draft calciners.
diplomatic corps.

Savoie
director of the
University
Press, guided the publication of 27 books
the past year.

These books are bringing Oklahoma to
the attention of a world-wide audience.

They effectively offer a keen insight
into the state by reflecting the cultural and
scholarly activity and the quality of litera-
ture demanded by its citizens.

The Press, now in its 27th year, has
published more than 300 books, ranging
in subject matter from Indian history to
literary criticism and science. It began as
an adjunct of the “print shop” at Norman
and has since moved to a position of inter-
national significance.

The books scheduled for publication in
1955 illustrate the manner in which the
Press strives to affect the thinking of the
world on a wide range of subjects.

In February the Press will publish a
book on history and one on music, both
by OU professors. Beyond the Cross Tim-
bers: The Travel of Randolph B. Marcy,
by W. Eugene Hollon, will precede by a
few days Music in My Time: The Memo-
irs of Alfredo Casella. The latter, edited
and translated from the Italian by Spencer
H. Norton, is the story of the develop-
ment of modern serious music from the 1890s
to the 1940s, dealing with the important
composers, conductors, and performers of
that era.

A book of special interest to Okla-
homans and to doctors everywhere Open
Waters Please: The Story of Dentistry in
Oklahoma, will appear in April. The Uni-
versity Press, collaborating with the Okla-
ahoma State Dental Association, selected
Dr. J. Stanley Clark, noted historian, to
write the book.

Another work of consequence will be
The American Tradition in Foreign Policy,
by Frank Tannenbaum, a Columbia Uni-
versity professor. It will be published in
March.

The late Dr. William Bennett Bizzell,
former OU president, conceived the idea
for University Press. He wished to enlarge
the usefulness of the university's print
shop, and accordingly, in 1928, invited
Joseph A. Brandt, then city editor of the
Tulsa Tribune, to take over the shop.

The staff grew, and in April, 1929, the
first book published by the infant Press
was issued. It was Folk-Say, Volume One,
a collection of folk tales and verses com-
piled by B. A. Botkin, then a professor of
English at OU.

P. J. Conkright, a gifted young artist
from Sapulpa, became a combined job
printing compositor and layout man under
Brandt, and in due course the books issued
at Norman began to attract attention for
their appearance and for their literary use-
fulness.

Since, the books repeatedly have won
recognition for merit in outward tan-
semblance as well as for content. Willard
Lockwood and Will Ransom, art editors,
design the Press' publications, seeking,
says Ransom, "the balance between the
author's intention and the reader's con-
venience.

Ransom, who has been with University
Press almost 14 years, has been widely
acclaimed for his work. He recently re-
ceived a citation from the Limited Edi-
tions Book Club, an eastern publishing
firm, in recognition of work in the field
of book design, which includes typography
and art.

Lockwood joined the staff in 1951. His
designs for books have a freshness and
originality which has brought recognition
from the American Institute of Graphic
Arts, from booksellers, librarians, and the public.

Nearly one thousand manuscripts now reach the Press each year from authors all over the world. Selection is on the basis of a simple, but discerning formula. The books must have something significant to say, and they must say it well.

Mary Eugenia Stith, associate editor, is chief of the Press's editorial offices. A native of Kentucky, Miss Stith is an avid student of Maya and Central American antiquities. She has taken particular delight in a book series, now numbering 38 volumes, called "Civilization of the American Indian."

Distribution of the books is the job of Glenn Philip Bradley, sales manager, who came to the Press in 1948 from a reporter's job on the Norman Transcript. Bradley's sales force travels several months ahead of the appearance of any given book, showing jackets, sample pages, and sometimes the whole printed text to booksellers, librarians, and others. The distributors sell in all countries with which the United States has regular trade relations.

Credit for the sparkling appearance of the printed pages goes to Van Buren Endicott, superintendent of the printing division, to Kenneth Benson, his assistant, and to the typesetters, pressmen, and binders in the printing division.

In the printing area of the modern, red brick Press building are the big cylinder presses—two Miehle model 41s, a Miehle model 4, and a Miehle model 29. In addition the Press uses six linotype machines, banked with a large variety of type faces, five job presses, a Christensen Gang Stitcher, and two folders.

Books are not the only literature that rolls off the presses. Three quarterlies are staggered so that one is printed each month. "The Sooner Magazine" is published by the OU Alumni Association. For six years the University law school has published the "Law Review" which, as a periodical of value to the Oklahoma bench and bar and to the legal profession throughout the United States, has served as a splendid emissary from Oklahoma.

The third quarterly, "Books Abroad," is a 26-year-old publication presently edited by Ernst Erick Noth, a student of foreign language literature and an established creative writer. The magazine reviews currently important books published abroad in languages other than English. It constitutes a unique and momentous cultural contribution to the world, in affording an unsurpassed opportunity for readers to keep abreast of the best developments in writing abroad.

University Press' printing operations are conducted without appropriation. In the course of the year, operation costs are met from payments by customers, confined to university departments and the publishing division of the Press. By manufacturing and general merchandising standards, the Press, which employs more than 40 people, is a highly important part of Oklahoma's industrial enterprise.
The finished product is packaged and sent about 400 feet on an elevating conveyor to the point where it is loaded onto box cars or stored in the warehouse.

Above—L. A. Rowland, vice president of Deere & Co. and general manager of the Grand River Chemical Division.

Below—W. W. Yeandle, works manager.

Deere & Co.
Comes to Oklahoma

By Kazimir Petrauskas

Pryor’s newest and most expensive industry, the $20 million fertilizer plant, has completed and has gone into production.

The gigantic plant, the Grand River Chemical Division of Deere & Company, took two years to construct. It will make ammonia and urea and is designed to have a daily capacity of 180 tons of ammonia and 275 tons of urea.

It is one of a number of steam operated plants which represent new trends in design of ammonia-processing facilities. The plants feature a relatively high degree of process integration, compact layout, reduced equipment size, and extensive use of automatic control, as compared with plants of more conventional design.

The Deere plant is connected to an Oklahoma Natural Gas Company pipeline, which has a capacity of 75 million cubic feet a day. A Missouri-Kansas-Texas railroad spur track runs into the plant grounds, and a 2-mile steam line from the Grand River Dam authority steam plant has been completed.

The plant itself is a mass of towers, tanks and pipes, some of which develop temperatures of as low as 250 degrees F. below zero, while others run at 2,600 degrees above zero.

L. A. Rowland, vice president of Deere & Co., said, “This means an increase to Oklahoma payrolls, and no one should be more interested in the welfare of the farmer than a manufacturer of farm equipment. We figure if farmers raise bigger crops we can sell them more tractors.”

“We’re going to train Oklahoma farmers to use our fertilizer. This operation is an adjunct to our farm machinery business. The end nitrogen product can be used both as a fertilizer and as a protein feed for cattle, sheep and goats.”

The plant will serve the farm states of Iowa, Illinois, Arkansas, Oklahoma, New Mexico and Texas. This marks Deere’s first venture into the fertilizer business.

The process employed is of Foster Wheeler design, combining these steps:
1. Partial oxidation of natural gas to prepare synthesis gas in Texaco Development Company gas generators;
2. The Casale process for ammonia synthesis;
3. The Pechiney process to make urea.

The process used by the Casale method uses higher operating pressure. It also differs in that it recirculates unconverted gases by an ejector. The catalyst is state that at the higher pressure employed by the Casale method, the catalyst has a greater tolerance for synthesis gas impurities, and higher once-through conversion is obtained. Also, it is possible to condense the anhydrous ammonia with water, thus avoiding use of auxiliary refrigeration equipment necessary at lower pressures for ammonia condensation.

The advantages cited for the use of an ejector rather than a mechanical compressor for recirculation of unconverted gases include lower cost and maintenance and minimum oil contamination in the gas stream.

The two stages in the Pechiney process for making urea are formation of ammonium carbonate and conversion of part
of the carbamate to urea, with formation of water.

This process brings a circulating neutral oil into contact with the ammonia-carbon dioxide mixture in an autoclave. The oil contains ammonium carbamate as a finely dispersed solid. This salt-oil is held at a temperature low enough so that the carbamate will be produced in this form.

Urea-carbamate-oil mixture leaving the reactor is let down in pressure. At this pressure in the gas-liquid separator, unconverted carbamate is changed back to ammonia and carbon dioxide. These enter the oil absorbers and recombine to form ammonium carbamate, which is recycled to the reactor. The residual liquid, oil and an aqueous solution of urea, is pumped from the bottom of the liquid-gas separator and goes to the oil-urea-solution separator. Urea solution is purified and evaporated to proper concentration and is prilled for bagging.
Rare Industry Thrives In LeFlore County

In the small eastern Oklahoma hamlet of Cedars, a town that doesn't even show on the map, the lost art of glass blowing is being propagated by O. C. Hamon and the seven employees of the Scott Glass Co.

Hamon started in 1916 as an apprentice glass blower at a factory in West Virginia. In two years he worked his way to the top in his trade.

After working several years, Hamon realized that glass blowers were getting scarce and that the craft was in danger of dying out completely. But he also realized that there would be more demand for hand blown glass articles as the tradesmen became fewer.

In 1941 Hamon and his family moved to Okmulgee, where he struck out on his own. He purchased a small building and began taking orders locally, gradually building up a business. Soon it became apparent that the local trade could not support the business, since tremendous quantities of natural gas were used in the kilns.

Hamon looked for a way to expand his business and at the same time reduce overhead expenses. In 1944 he found near Cedars a farm with a natural gas well, so he moved his family to the farm and converted the barn into a workshop. He called on wholesale florists and gift shops all over the country in regard to his glass objects.

The market was receptive toward hand blown glass, and soon Hamon had more orders than he could fill. Consequently, he began hiring local people and teaching them the trade. He found them quick and eager to learn, and it was not long until he turned the plant over to the employees, in order that he might devote his full time to selling his products.

From practically nothing in 1944, Hamon's enterprise has expanded until now it includes a factory, seven employees, and a $30,000 a year business. Products of the factory are sent to all corners of the United States.

Films of Oklahoma Are Used Widely

Use of films the state planning board has placed in the regional film libraries of the Department of Education has materially increased since last year. Earl Cross, co-ordinator of the audio visual education division, said that although more and more people see the films each year, the records indicate that demand for them has not slackened.

A total of 90 prints of nine films were shown to approximately 105,240 persons in 1954. From 877 bookings, the films were used altogether 2,631 times. The film shown the most times was Oklahoma Heartland, U. S. A., a 30-minute general study of Oklahoma's agriculture, industrial plants, natural resources, recreation areas and scenic beauty.

In order of the number of bookings in proportion to the number of copies available, the other films are Oklahoma Forestry, Oklahoma Heritage, Lake Murray, Lakes of Oklahoma, Oklahoma Industries, Land of the Cherokees, Rain Clouds and This is Oklahoma.
New Look in Wrappings

Grocery shoppers reach for food in glistening transparent packages almost as habitually as they select sliced bread. And because of this development in food merchandising, Package Engineers Co., Oklahoma City, recently moved to a new location so that it would be better able to meet the demand for cellophane and polyethylene bags.

Package Engineers Co., a division of Semco Color Press, Inc., prepares printed bags and wraps in various stages for customers. To most, the company delivers finished bags; others buy printed rolls and sheets which are ready to fashion into wraps and bags.

Carrots were the first root vegetable to be packaged without green tops, according to Bernie Semtner, general manager of Package Engineers Co. Experimental shipments proved that costs could be appreciably reduced by severing the tops. Shoppers were at once attracted to the newly displayed carrots, still fresh when they reached the market.

Among the vegetables most recently added to the list of those packaged in transparent bags are radishes. One year in Florida, an unseasonable frost brought near disaster to the radish crop. The roots were packaged without the withered tops in polyethylene in a desperate and successful attempt to preserve the appearance and the natural pungency of the vegetable long enough to sell it.

Polyethylene, a petroleum product, is a light synthetic resin. Bags made of the substance seal themselves under application of heat. They are less transparent, but somewhat stronger than cellophane, and are particularly suitable for packaging heavy produce, such as oranges. Tidy Leather Co., Tulsa, orders polyethylene bags for a “Do It Yourself” moccasin kit.

On the other hand, cellophane, a wood-pulp product, is 100 per cent transparent. It comes in three weights and is popularly utilized for meat wraps and for candy, nut and potato chip bags.

Artwork is the first step in preparation of a new bag. The artist, Jim Sullivan, makes a rough draft of the design on layout paper, which he makes into a facsimile of the bag.

Separate printing plates for each color are made from magnesium casts. Final printing plates are rubber and are molded to fit the press cylinders. One of the chief problems of the process is producing rubber plates that will not cause very fine print to blur.

The 4-color press, custom made by Kiddler Press Co., of Dover, New Hampshire, prints rolls of polyethylene at a speed of about 200 feet per minute and cellophane at more than 300 feet per minute. Fast drying flexographic inks, made of color pigments, varnish and alcohol, are used. Until about 10 years ago printers attempted to use oil inks, but the oil did not adhere well enough to cellophane and polyethylene, and it dried too slowly.

Most of the ink, which is about the consistency of fresh house paint, is obtained already mixed to the shades desired by the customers, but the company does some mixing. Cost of printed cellophane and polyethylene is largely determined by the amount of ink used. Ink currently is priced from about 65 cents to $1.50 a pound.

The press is driven by a 10-horsepower motor with seven auxiliary motors, as those for heating, ventilation, hydraulic pumps, and a circulating ice water system. Fresh ink is dried by the press in an oven heated to approximately 150 degrees Fahrenheit for rolls of polyethylene and 400 degrees for cellophane. The rolls are cooled as they thread around an ice water roller, chilled to 40 degrees. Rolls as wide as 30 inches can be fed through the press. Narrow rolls are run in multiples to minimize web breakage. They can be cut from wide rolls by another machine, called a slitter.

In addition to the big printing press, Package Engineers Co. uses other types of heavy machinery. Printed cellophane and polyethylene rolls are converted into bags by machines which can be set to turn out containers of a wide range of sizes.

Bobby Edwards, seen through a roll of printed cellophane, is putting a new roll on the press by shafting, or cementing, it to the old roll.
Since October 15 the Wells Lamont glove factory in Hugo has been in operation, and already it has had a marked psychological effect on the city. This is the opinion of Murl Rogers, secretary-manager of the Hugo Chamber of Commerce.

More than three years of anxiety, careful planning, and hard work went into building the plant, one of the most ambitious and foresighted projects ever attempted in the area. And now, reports Rogers, with the factory employment roll growing weekly, Hugo can tell the difference.

The stimulus to business has given the people new hope. Employment has generally picked up. Vacant houses are filling, and new building is in the planning stage. The plant is adding a helping measure of industrial wealth to the economy of the area. The result is local purchases by employees, supply purchases by the company, and more taxes for schools.

The new $210,000 buff brick factory building stands as a monument to the work and industrial dreams of hundreds. The people of Hugo, which had a 1950 population count of 5,950, dug down in their pockets and came up with a building for the Wells Lamont company.

Painters, plumbers, bricklayers, carpenters and many others worked at reduced rates. The architect lowered his fee from $10,000 to $2,000. Electricians donated $7,000 worth of labor in wiring for power and the huge air conditioners.

Among the biggest boosts to the project was the contribution of Hubert Maes, who retired three years ago after serving 30 years as engineering superintendent with the Los Angeles street department.

Maes opened offices as a general contractor. Deeply interested in the welfare of his home county, he closed his offices for six months and devoted full time to the project. As materials expeditor, he cut the cost from $220,000 to $120,000.

Today the factory, under the management of John M. Podany, who has been with the Wells Lamont company for 28 years, is turning out a top quality work glove. The plant currently is training stitchers to perform eight separate operations. Training periods last from one to six months, depending on the difficulty of the job and the skill required.

When the plant reaches full production in two or more years, about 300 persons will be employed. The factory will turn out from 4500 to 5000 dozen pairs of gloves a week. One to four styles of work glove, depending on the demand, will be manufactured. When all the machinery is installed, workers will stamp patterns, as well as sew the glove together, as they are doing now.

From the factories, Wells Lamont gloves are sent to warehouses in Philadelphia, Chicago and Redwood, California, from where they are distributed.
Edwin Neugass, president of Plasteck, Inc., is striving to make Poteau known the world over for the aircraft instrument panels made by his company.

Plasteck came to Oklahoma from Connecticut just a little more than a year ago, and since, Neugass' ambition is drawing close to realization. At the present time the firm is doing practically all of Boeing's panels, and in addition, it has contracts with Douglas, Lockheed, Sperry Gyroscope, R. C. A., Westinghouse, and many others.

Plasteck employs about 125 people and has an annual payroll of about half a million dollars. The company came to Oklahoma for several reasons. The town of Poteau cooperated in providing large plant facilities, which are frequently difficult for a small company doing its own financing to obtain in the east. Poteau is close to many of Plasteck's major customers.

Neugass started making plastics in Connecticut several years ago, manufacturing novelties and lucite surgical instruments. The ultra-violet cockpit lighting used during the war caused almost total loss of dark adaptation. The Aeromed branch of the Navy found that it wanted this ultra violet changed to a deep red light to preserve the pilot's vision at night and it was Plasteck that took the theoretical requirements and made the first practical instrument panel to pass the Navy specification. The Aeromed Labs set up all these specifications, and for five or six years no one was able to manufacture them, but Neugass, because of his background as a pilot back in the 30's and his experience in the optical and plastics field, was able to solve the many problems.

After many failures, Neugass perfected the Trans-Lite panel, which is now finding widespread use. It consists of a thick layer of clear plexiglas with a thin layer of first white and then black vinyl resin permanently laminated to it. The engraving is done through the black exposing the white letters. The sheets are cut to size, holes drilled, red bulbs mounted in the sheets and the black outer layer engraved to expose the white letters, which reflect ambient light but in the dark transmit the red light. The panels are made to extremely close tolerances so that they will fit the mating parts built by the airplane companies. There is much optical design incorporated in that all letters on the panels must be evenly illuminated so that each is equally legible by the pilot.

Neugass has over twenty-five patents in the United States and in many foreign countries. These panels have become standard equipment on fighters and bombers all over the world and are supplied by licensees in California, London, and Paris.

Plasteck maintains the largest research and development laboratory for this type of work in the world and has worked with the U. S. Bureau of Standards and the Ministry of Supply in England and with Los Angeles scientists on the establishment of light measuring equipment.

A whole floor of one of Plasteck's buildings is devoted to engineering, research and development. It is equipped with instruments so sensitive that they can measure the intensity of a light a half mile away. The finished products of Plasteck meet all military specifications such as being abrasion, moisture, temperature and shatter proof.
High Frequency Metal Cleaner Used at Tulsa

“Silent sound,” a new miracle tool used to clean metal objects, is even better than old-fashioned elbow grease, according to Dwight J. Evans, head of the Engineering Test Service in the American Airlines building at Tulsa. Evans is the local distributor for the new Sonogen ultrasonic generator, which is the only one in the southwest. The machine uses high frequency, or “silent” sound to produce violent agitation of a cleaning solvent in which objects are immersed.

The machine’s uses are limited at the present time to cleaning small precision parts such as watch movements, electric shaver parts, and aviation instruments. However, engineers believe that in the near future “silent sound” will be used to mix paints, wash clothes, and even to drill teeth painlessly.

As the part to be cleaned is immersed in the cleaning solvent, 110 volts of electricity are directed through a quartz crystal, changing the electricity into mechanical vibrations which, vibrate from 300,000 to a million times a second. The action shakes loose all the dirt and foreign particles from cracks and crevices in the object.

Evans says that parts that ordinarily take hours to clean now can be done in minutes.

Officials at Tinker Air Force base in Oklahoma City have shown an interest in this type of machine for use in cleaning the many small parts of aviation instruments and the big jet engines.

Camargo Bridge Opened

Celebration for completion of the Camargo bridge over the Canadian river on State Highway 34 was held December 15. Former Governor Johnston Murray, for whom the bridge was named, opened the ceremony by snipping the red ribbon which spanned the south posts of the structure. Also participating were Governor Raymond Gary and former Governor Roy Turner.

Miss Janice Kelly of Elk City was crowned “Miss Camargo” after a barbecue dinner attended by more than 6,000 Oklahomans who gathered to see the million dollar bridge dedicated.

Water Petitions Record Is Set

Oklahomans — particularly Oklahoma farmers — have been more interested in adequate water supplies during 1954 than during any other period in the state’s history. That’s the conclusion of the state planning board’s water resources division, after a study of water rights applications received since January 1.

The division received more applications in 1954 than during any other year since Oklahoma’s water laws were adopted by the First Legislature in 1907. The office had received more than 1400 applications for water rights by the end of the year. This compares strikingly with a total of 814 filed last year, and 561 in 1952.

In C. Husky, division director, estimates that 97 per cent of the applications are for irrigation water uses. Other uses include municipal and industrial water supplies. Both surface and ground water sources are included.

Seven of the state’s 77 counties had passed the hundred mark on water rights applications by the middle of November. Major county had the largest number—255. Caddo county had 228, Harmon county 211, Jackson county 175, Tillman county 169, Custer county 115, and Texas county 105.

The bridge, located in Dewey county between Lecley and Camargo, north of Elk City, climaxes the work of hundreds of western Oklahoma civic leaders during the past 50 years and almost completes the last gap of the Canada to Mexico route. Only a few miles near the bridge remain to be paved.

Completion of the span will remove from service one of the last existing ferries in the state — a ferry that was unique in this land of wide river beds that remain dry for most of the year.

The ferry consisted of a high-wheeled tractor and trailer that ferried the stream with crossing cars. The cars did their own fording when the water was low enough or the bed dry, as it has been recently. But if the river was too high for the ferry, as it has been many times, travelers had to go either east or west to make the crossing at other bridges.

Longhorn cattle on their way from Texas ranches to the railhead at Dodge City, Kansas, once crossed the river where the bridge was built. The condition of the river bed and the width of the sprawling Canadian river at that point held up construction for all these years, causing inconvenience, heartaches and trouble for area residents.

The legislature started setting aside funds with an appropriation from the general fund six years ago, and the bridge was constructed at a cost of $1,015,000.