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Preface 

Performance, in terms of user response time and the utilization of processing and 

communication resources, is an important factor to be considered when designing 

security authentication protocols. The growth of Internet subscription and network 

interconnectivity has created an environment in which information systems have a greater 

exposure to unauthorized access. To meet the challenge of protecting information and 

computing systems, researchers and developers have focused attention on authentication 

protocols. An authentication protocol helps assure that only properly authorized users can 

access to information systems by positively identifying the user. Unfortunately, a 

protocol that provides a high level of assurance often consumes significant processing 

and communication resources. As a result, improved security may exact a price in the 

servers and networks which are overburdened already and results lengthy delays for 

users. This thesis presents a performance analysis of one of the authentication protocols 

by varying the encryption algorithms and there by understand the performance 

implications of the ciphers on the protocol. 
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Chapter 1 

Introduction 

1.1     Computer Networks 

Just as there has been an unstoppable trend towards having additional computing 

power at one’s fingertips, the world of networked computing has similarly advanced at an 

amazing pace, approximately doubling in connectivity and reach, every year. This 

implies that the number of computer users connected to the network next year is likely to 

exceed the total number of network-connected people in each previous year added 

together. This rate of growth has caused revolutionary changes in network technology 

development and has created social, business, and legal advances for integrating the 

technology into everyday life.  The rapid growth of Internet subscription and network 

interconnectivity has created an environment in which information systems have a greater 

exposure to unauthorized access. Security becomes a critical issue in reliable network 

computing these days. Security of the information is at stake and is easy to be destroyed 

by unauthorized intrusions. Network-scanning events are becoming common events of 

life these days.  
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1.2    Network Authentication

Authentication is a fundamental process in securing information resources since it 

establishes the identity of the system or user wishing to gain access to the resource. 

Authentication is of major importance to the security of open networks. In open 

networks, the identities of communicating parties cannot be assumed, but must be 

authenticated (i.e., proven). Traditionally strong forms of authentication are not available 

in most operating system networking software. Instead, reserved ports or passwords are 

used, each of which might be easily compromised.  Tools to sniff passwords off of the 

network are in common use by malicious hackers. Thus, applications which send an 

unencrypted password over the network are extremely vulnerable. Worse yet, 

client/server applications rely on the client program to be “honest” about the identity of 

the user who is using it.  Other applications rely on the client to restrict its activities to 

those, which is allowed to do, with no other enforcement by the server. One of the most 

basic authentication protocols is a password challenge – a user is asked to demonstrate 

knowledge of a pre-established password to prove his or her identity. Simple password 

security is a weak mechanism subject to several types of attacks. To meet the challenge 

of protecting information and computing systems, researchers and developers have 

focused attention on authentication protocols. Many authentication protocols have been 

developed to try to improve on basic password security.  Kaufman et al. [3] describe both 

the weaknesses of password authentication and more sophisticated and secure protocols 

such as Kerberos. 
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1.3 Cryptographic Algorithms 

 Mature authentication protocols are based on cryptographic algorithms. Encoding 

the contents of a message in such a way that hides its content from outsiders is called 

Encryption. Then encrypted message is called ciphertext. The process of retrieving the 

plain text from the ciphertext is called Decryption. Encryption and Decryption usually 

make use of a key, and the coding method is such that decryption can be performed only 

by knowing the proper key. There are two classes of key-based algorithms, symmetric (or 

secret key) and asymmetric (or public key) algorithms. The difference is that symmetric 

algorithms use the same key for both the operations (or the decryption key is easily 

derived from the encryption key), whereas asymmetric algorithms use different keys for 

encryption and decryption, and decryption key cannot be derived from the encryption 

key.  

Symmetric algorithms can be divided into stream ciphers and block ciphers. 

Stream ciphers can encrypt a single bit of plaintext at a time, while block ciphers can take 

a number of bits and encrypt them as a single unit. The mostly used symmetric ciphers 

are Data Encryption Standard and Triple-DES. Advanced Encryption Standard is the 

newest standard and is expected to replace the older versions to become the mostly used 

encryption algorithms.  

Asymmetric algorithms also called as Public Key Cryptography permit the 

encryption key to be public, allowing anyone to encrypt with the key. Only the proper 

recipient who knows the decryption key can read the message. The encryption key is also 
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called the public key and the decryption key is the private or secret key. RSA is probably 

the best known asymmetric encryption algorithm used. Elliptic Curve Cryptography is 

also another advanced asymmetric encryption algorithm which is being considered as an 

alternative option to RSA in many fields.  

Kerberos is a mature network authentication protocol based on secret key 

cryptography. Matured protocols today have a wide range of proposals to extend them in 

ways that were not originally envisioned by their authors. Kerberos is a good candidate 

for an analysis with the encryption algorithms discussed above.  

The protocol designer faces many decisions about the use of encryption that affect 

the level of assurance and performance. Advanced Encryption Standard (AES) is now the 

latest approved standard for symmetric encryption algorithm. While benchmarks of the 

algorithm has been made, the performance in our authentication environment needs to be 

analyzed. We analyze in more general terms the performance characteristics of the 

authentication protocol with varied encryption algorithms to better understand the 

assurance and performance we get with the variant.  

The rest of this thesis is organized as follows. The next chapter describes briefly 

the Kerberos Authentication protocol. Chapter 3 talks about the encryption algorithms 

used in Kerberos currently and the variants available based on encryption algorithms. 

After its major standardization, we discuss the typical issues in current Kerberos based on 

cryptography in chapter 4. Chapter 5 discusses the proposed variants for Kerberos and 
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Chapter 6 talks about the performance evaluation for the approaches. Chapter 7 

concludes on the approaches and provides pointers to future work.  
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Chapter 2 

Encryption & Kerberos Authentication Protocol 

Kerberos acts as a dependable authentication service with the use of conventional 

cryptography. The basic version of Kerberos used the stream encryption ciphers, which 

can be simulated by commonly available block encryption ciphers, such as Data 

Encryption Standard, in conjunction with block chaining and checksum methods [1]. We 

start with the basics of cryptography and get into the variations of Kerberos based on 

some of the standards. 

2.1 Basics of Cryptography 

People mean different things when they talk about cryptography. A method of 

encryption and decryption is called cipher. All algorithms use a key to control encryption 

and decryption; a message can be decrypted only if the key matches the encryption key. 

There are two classes of key-based encryption algorithms, symmetric (or secret-key) and 

asymmetric (or public-key) algorithms. The main difference between the two is that the 

symmetric algorithm uses the same key for both encryption and decryption or sometimes 

the decryption key is derived from the encryption key, whereas asymmetric algorithms 

use a different key for encryption and decryption, and one cannot be derived from the 

other.  
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2.2 Symmetric Key Cryptography 

Symmetric algorithms can be divided into two as stream ciphers and block 

ciphers. A stream cipher does the encryption for a single bit of a plaintext at a time, and 

the block cipher can take a number of bits and encrypt them as a single unit. Symmetric 

ciphers are the most straightforward approach to data encryption. They are 

mathematically less complicated than their counterparts and have been used for many 

centuries. There are two common symmetric ciphers widely used in today’s information 

systems. 

2.2.1 Data Encryption Standard (DES) 

The data encryption standard (DES) is an algorithm developed in mid 1970’s.  It 

was turned into a standard by the US National Institute of Standards and Technology 

(NIST), and was adopted by several other governments worldwide. It was and still is 

widely used, especially in the financial industry. 

 DES is a block cipher with a 64-bit block size. It used 56-bit keys. 8-bits are used 

for parity. This makes this algorithm susceptible to exhaustive key search with modern 

computers and special-purpose hardware. DES is still strong enough to keep most 

random hackers and individuals out, but is easily breakable with special hardware by 

government, criminal organizations, or major corporations. DES is getting too weak, and 

is not used in new applications these days.  

 A variant of DES, TRIPLE-DES (also 3DES) is based on applying 3 stages of 

DES with a separate key for each stage. So the key length in 3DES is 168 bits. The 3DES 

is much stronger than its predecessor, however, it is rather slow compared to some new 

block ciphers. Even though DES and its variants seem to be have little interest for 
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applications today, there are many reasons for considering it still important. DES was the 

first block cipher, which was widely deployed in public sector, and hence it played an 

important role making strong cryptography available to the public. 

 The design was exceptionally good for a cipher that was meant to be used only a 

few years. DES proved to be a very strong cipher and it took over a decade for any 

interesting crypt analytical attacks against it to develop. Development of differential 

cryptanalysis and linear cryptanalysis opened ways to better understand the design of 

block ciphers.  Even today, where DES is no longer considered for any future practical 

solution, it is often used to describe new crypt analytical techniques. It is remarkable that 

even today there is no technique that would completely break DES in a structural way; 

indeed, the only real weakness known is the short key size and perhaps the small block 

size. 

2.2.2. Advanced Encryption Standard (AES) 

In response to the growing feasibility of attacks against DES, NIST launched a 

call for proposals for an official successor that meets 21
st
 century security needs. This 

successor is called Advanced Encryption Standard (AES). After five algorithms making 

to the second round, Rijndael was selected to be the final standard. Let’s take a look at 

the cryptographic peculiarity of AES.  

AES has a 128-bit block size, and it supports 128, 192, 256 bit keys. The rather 

large key sizes are probably required to give means for construction of efficient hash 

functions.  AES follows the tradition of square ciphers. NIST gave as its reasons for 

selecting Rijndael that it performs very well in hardware and software across a wide 
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range of environments in all possible modes. It has excellent key setup time and has low 

memory requirements, in addition its operations are easy to defend against power and 

timing attacks. 

Many commonly used ciphers are block ciphers. Block ciphers transform a fixed-

size block of data into another fixed-size block using a function selected by the key. If the 

key, input block and output block all have n bits, a block cipher basically defines a one-

to-one mapping from n-bit integers to permutations of n-bit integers. If the same block is 

encrypted twice with the same key, the resulting cipher text blocks are also the same. 

This mode of encryption is called electronic codebook or ECB. This information could be 

useful for an attacker. To cause identical plaintext blocks being encrypted to different 

cipher text blocks, two standard modes are commonly used: 

AES is an iterated block cipher with a variable block length and a variable key 

length. They block length and the key length can be chosen independently as 128, 192 or 

256 bits. The block where the operations are applied is called a state. A state is organized 

as an array of 8 bits with 4 rows. The number of columns is equal to the block length 

divided by 32. The cipher key is also organized in the same form. Shown below is the 

state with 192 bits.  

A0,0 A0,1 A0,2 A0,3 A0,4 A0,5 A0,6 A0,7 

A1,0 A1,1 A1,2 A1,3 A1,4 A1,5 A1,6 A1,7 

A2,0 A2,1 A2,2 A2,3 A2,4 A2,5 A2,6 A2,7 

A3,0 A3,1 A3,2 A3,3 A3,4 A3,5 A3,6 A3,7 
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Like DES, AES consists a number of equivalent rounds. The number depends on 

the lengths of the block and key and is provided in the following table. 

128 192 256 

128 10 12 14 

192 12 12 14 

256 14 14 14 

The transformation in each round is composed of four different transformations in 

the following order  

Byte Substitution (ByteSub) – This is a non-linear byte substitution realized by an 

8-8 S-box. This is executed on each byte in the state. 

Row Shifting (ShiftRow) – The four rows of the state are cyclically shifted over 

different offsets. 

Column Mixing (MixColumn) - Every column of a state is transformed using a 

matrix multiplication in this step. 

Round key addition (AddRoundKey) – A round key is applied to the state by a 

bitwise XOR. 

However in the final round the step of column mixing is not performed. The 

round keys are derived from the key by a key schedule. For each round, we need a round 

key of the same size as the size of the state. This is achieved by recursive expansion of 
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the key to the size of  (number of rounds) * (size of state). From this expanded key the 

round keys are taken sequentially. 

The Encryption Algorithm 

 The encryption algorithm consists of  

• Key expansion 

• An initial round key addition 

• Several rounds of ByteSub, ShiftRow, MixColumn and 

AddRoundKey 

• And a final round of ByteSub, ShiftRow and AddRoundKey 

The Decryption Algorithm 

 The inverse of a round is given by AddRoundKey, Inverted MixColumn, 

inverted ShiftRow and inverted ByteSub. The inverse of a final round is got by 

AddRoundKey, inverted ShiftRow and inverted ByteSub. After which a final 

AddRoundKey is done. 
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  Due to algebraic properties of the steps of a round, the algorithm can be 

rearranged like the following. 

• Inverse key expansion 

• An initial round of key addition 

• Several rounds of inverted ByteSub, ShiftRow, MixColumn and 

AddRoundKey. 

• A final round of inverted ByteSub, ShiftRow and AddRoundKey. 

  

2.3 Asymmetric Key Cryptography 

Asymmetric Key Cryptography is also called Public-key cryptography. It uses a 

secret key that must be kept from unauthorized users and a public key that can be made 

public to everyone. Both the public key and the private key are mathematically linked; 

data encrypted with the public key can be decrypted only by the private key and the data 

signed with the private key can only be verified with the public key. 

 The public key can be published to anyone. Both the keys are unique to the 

communication session. Public-key cryptographic algorithms use a fixed buffer size as 

opposed to variable length buffer size used by the private-key variants. Public-key 

algorithms cannot be used to chain data together into streams like their counterparts can.  

 The theory behind asymmetric key algorithms was first published by Whitfield 

Diffie and Martin Hellman in 1975 [5], and since then, several implementations have 

been created. One widely-used asymmetric key algorithm is RSA. It uses exponentiation 
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modulo a product of two large primes to encrypt and decrypt. The public key exponent 

differs from the private key exponent, and determining one exponent from the other is 

believed to be fundamentally hard without knowing the primes. Public-key algorithms 

can be used, depending on the protocol, for either confidentiality or sender 

authentication. For instance, a user can encrypt a message with their private key and send 

it. That it can be decrypted using the corresponding public key provides assurance that 

that user sent it and none else. 

Examples of well regarded asymmetric key algorithms include: 

• Diffe-Hellman 

• RSA 

• ElGamal 

• Elliptic Curve cryptography 

And Examples of protocols using these algorithms includes: 

• SSH 

• SSL now implemented as an IETF standard – TLS 

• Digital Signature Standard (DSS) 
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2.4 Kerberos – A Primer 

Kerberos provides a means of verifying the identities of principals, (e.g., a 

workstation user or a network server) on an open (unprotected) network. Its purpose is to 

allow users and services to authenticate themselves to each other. That is, it allows them 

to demonstrate their identity to each other, unequivocally. This is accomplished without 

relying on authentication by the host operating system, without basing trust on host 

addresses, without requiring physical security of all the hosts on the network, and under 

the assumption that packets traveling along the network can be read, modified, and 

inserted at will. Kerberos relies heavily on authentication technique involving 

conventional cryptography, i.e., shared secret key.  The basic concept is simple: if a 

secret is known by only two people, then either person can verify the identity of the other 

by confirming that the other person knows the secret. 

For example,  let’s suppose that Alice often sends messages to Bob and that Bob 

needs to be sure that a message from Alice is really has come from Alice before he acts 

on its information. They decide to solve their problem by selecting a password, and they 

agree not to share this secret with anyone else. If Alice’s messages can somehow 

demonstrate that the sender knows the password, Bob will know that the sender is Alice.

The only question left for Alice and Bob is to resolve how Alice will show that 

she knows the password. The password could be simply included somewhere in the 

message, perhaps in a signature block at the end – Alice, Secret. This could be simple and 

efficient and will work only if Alice and Bob can be sure that no one else is reading their 

information. Unfortunately, that’s not the case. The messages pass over a network used 

by other people of whom, some have a hobby of scanning traffic in hope that one day 
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they might spot a password. So it is out of question for Alice to prove that she knows the 

secret by simply saying it. To keep the password secret, she must show that she knows it 

without revealing it. Kerberos solves this problem with secret key cryptography. Rather 

than sharing a password, communication partners share a cryptographic key, and they use 

knowledge of this key to verify one another’s identity. One party proves the knowledge 

of the key by encrypting a piece of information and other by decrypting it.  

Figure: 1 Kerberos Pictorial Representation 

   The actual authentication process in the protocol proceeds as follows: A client 

sends a request to the authentication server (AS) requesting "credentials" for a given 

server.  The AS responds with these credentials, encrypted in the client's key.  The 
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credentials consist of 1) a "ticket" for the server and 2) a temporary encryption key (often   

called a "session key").  The client transmits the ticket (which contains the client's 

identity and a copy of the session key, all encrypted in the server's key) to the server.  

The session key (now shared by the client and server) is used to authenticate the client, 

and may optionally be used to authenticate the server.  It may also be used to encrypt 

further communication between the two parties or to exchange a separate sub-session key 

to be used to encrypt further communication. 

The implementation consists of one or more authentication servers running on 

physically secure hosts.  The authentication servers maintain a database of principals (i.e., 

users and servers) and their secret keys. Code libraries provide encryption and implement 

the Kerberos protocol.  In order to add authentication to its transactions, a typical network 

application adds one or two calls to the Kerberos library, which results in the 

transmission of the necessary messages to achieve authentication. 

  The Kerberos protocol consists of several sub-protocols (or exchanges).  There 

are two methods by which a client can ask a Kerberos server for credentials.  In the first 

approach, the client sends a cleartext request for a ticket for the desired server to the AS. 

The reply is sent encrypted in the client's secret key. Usually this request is for a ticket-

granting ticket (TGT) which can later be used with the ticket-granting server (TGS).  In 

the second method, the client sends a request to the TGS.  The client sends the TGT to 

the TGS in the same manner as if it were contacting any other application server which 

requires Kerberos credentials.  The reply is   encrypted in the session key from the TGT. 

   Once obtained, credentials may be used to verify the identity of the   principals 

in a transaction, to ensure the integrity of messages exchanged between them, or to 



 17

preserve privacy of the messages.  The application is free to choose whatever protection 

may be necessary. To verify the identities of the principals in a transaction, the client 

transmits the ticket to the server.  Since the ticket is sent "in the clear" (parts of it are 

encrypted, but this encryption doesn't thwart replay) and might be intercepted and reused 

by an attacker, additional information is sent to prove that the message was originated by 

the principal to whom the ticket was issued.  This information (called the authenticator) is 

encrypted in the session key, and includes a timestamp.  The timestamp proves that the 

message was recently generated and is not a replay.  Encrypting the authenticator in the 

session key proves that it was generated by a party possessing the session key.  Since no 

one except the requesting principal and the server know the session key (it is never sent 

over the network in the clear) this guarantees the identity of the client. 

The integrity of the messages exchanged between principals can also be 

guaranteed using the session key (passed in the ticket and contained in the credentials).  

This approach provides detection of both replay attacks and message stream modification 

attacks.  It is accomplished by generating and transmitting a collision-proof checksum 

(elsewhere called a hash or digest function) of the client's   message, keyed with the 

session key.  Privacy and integrity of the messages exchanged between principals can be 

secured by encrypting the data to be passed using the session key passed in the ticket, and 

contained in the credentials. The authentication exchanges mentioned above require read-

only access to the Kerberos database.  Sometimes, however, the entries in the database 

must be modified, such as when adding new principals or changing a principal's key.  

This is done using a protocol between a client and a third Kerberos server, the Kerberos 

Administration   Server (KADM).  The administration protocol is not described in this 
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document. There is also a protocol for maintaining multiple copies of the Kerberos 

database, but this can be considered an implementation detail and may vary to support 

different database technologies. Our interest is in exploring the performance of the 

protocol when the cryptic algorithm is changed to Advanced Encryption Standards. 
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Chapter 3 

Proposed Protocol Variation and Methodology 

3.1 Overview  

The importance of performance of security protocols and encryption algorithms 

has been recognized for long by developers. Researchers have applied either complexity 

analysis to evaluate algorithm performance or measurement techniques to analyze system 

performance in most cases. [13-16] Protocol performance has become an increasingly 

important topic as security algorithms are more commonly used in high-workload 

computing and networking environments. 

Early research involved in determining if encryption calculations would put a 

damper on rapidly increasing data rates. Zorkadis [17] has identified the communication 

performance impact of five basic security services: authentication, access control, 

confidentiality, integrity and non-repudiation. Zorkadis started exploration of impacts by 

constructing a three-node tandem queuing model for secure communications. In his 

experiment, he considered the network to be the bottleneck server and modeled it as an 

M/D/1 [10] queue. Zorkadis recommended several optimization strategies and analyzed 

the impact of pre-processing feedback blocks in the DES cipher text stream.  

Since Kerberos was the standard network authentication protocol in the Open 

Software Foundation’s Distributed Computing Environment (DCE) [18, 22], and also in 

the latest version of Microsoft’s Network family of Operating Systems [Windows 2000 
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and Windows XP], this protocol has been analyzed in these contexts. DCE [19] and 

Windows services have been benchmarked and analyzed. In addition performance 

characteristics have been loosely measured in some of its applications [20], with good 

results. In a more recent analytical study El-Hadidi et al. [21] used a multiple, 

independent queue model to compare Kerberos performance to Diffie-Hellman and their 

proposed hybrid protocol, “HAH”. Their hybrid used secret key cryptography to 

distribute the Diffie-Hellman components. Their analysis concluded that Kerberos 

provided the best performance, Diffie-Hellman the least and their hybrid HAH in 

between the two.  

The performance of public and secret key encryption algorithms has been studied 

and documented widely. Hardware implementations of secret key operations can be up to 

1000 times faster than public key operations and their software counterparts can be 100 

times faster [4]. 

3.2 Proposed Variation - AES Encryption in Kerberos

 Very recently, the Kerberos Work Group has been working on including AES as 

the standard encryption in the protocol. This would support 128-bit block encryption, and 

key sizes of 128 and 256 bits. The NSA has approved the 128-bit AES for use up to 

SECRET level and 192-bit AES for use up to TOP SECRET level. 

 With large number of people involved in using Kerberos in day-to-day encryption 

and decryption needs, the algorithm used in this authentication protocol has been 

different so far. The following is a simple list of ‘modern’ Kerberos implementations and 

their usage of algorithms. 
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MIT & Heimdal 

      -    3DES with HMAC/SHA1 digest 

      -     RC4 with HMAC 

Microsoft  

- RC4 with HMAC 

Cybersafe 

- 3DES with MD5 digest 

With the large number of vendors using 3DES cipher, its clear that 3DES is now the 

most used algorithm in Kerberos. People have moved away from DES after its 

vulnerabilities have been exposed. Today, with RC4 support many of the 

implementations can work well with Microsoft Software. However the long term desire is 

for all implementations to use AES as the default preference instead of RC4 or even 

3DES. 

  

The Kerberos protocols described in this document are designed to use stream 

encryption ciphers, which can be simulated using commonly available block encryption 

ciphers, such as the Data Encryption Standard [6], in conjunction with block chaining and 

checksum methods [7].  Encryption is used to prove the identities of the network entities 

participating in message exchanges.  All principals registered in that realm to store a 

secret key in confidence trust the Key Distribution Center for each realm.  Proof of 

knowledge of this secret key is used to verify the authenticity of a principal. 
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    The KDC uses the principal's secret key (in the AS exchange) or a shared session 

key (in the TGS exchange) to encrypt responses to ticket requests; the ability to obtain 

the secret key or session key implies the knowledge of the appropriate keys and the 

identity of the KDC. The ability of a principal to decrypt the KDC response and present a 

Ticket and a properly formed Authenticator (generated with the session key from the 

KDC response) to a service verifies the identity of the principal; likewise the ability of 

the service to extract the session key from the Ticket and prove its knowledge thereof in a 

response verifies the identity of the service. 

The Kerberos protocols generally assume that the encryption used is secure from 

cryptanalysis; however, in some cases, the order of fields in the encrypted portions of 

messages are arranged to minimize the effects of poorly chosen keys.  It is still important 

to choose good keys.  If keys are derived from user-typed passwords, those passwords 

need to be well chosen to make brute force attacks more difficult.  Poorly chosen keys 

still make easy targets for intruders. Kerberos uses Triple-DES in its recent 

implementations as we have seen above. Variations of Kerberos now include Public Key 

Infrastructure & RSA standards with Message Digest 5 checksum methods. 

  

 In this dissertation, we implement a skeleton version of Kerberos with AES cipher 

and compare the performance of the version with the DES and the 3DES versions of the 

protocol. We analyze the performance of user authentication within and across networks 

based on these ciphers.  
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 The resource consumption pattern for authentication protocols cycles from the 

client to a network to a server and back again. In Kerberos, the cycle is from the client to 

a KDC and back to a client and then to a server and back to the client. This pattern is a 

candidate for analytical modeling with closed queuing networks. Examples of applying 

close queuing networks to the performance analysis of communications network to model 

the performance analysis of communication protocols are available.  For instance, 

Bjorkman and Gunningberg [11] used a closed queuing network to model the 

performance of TCP multiprocessing architectures.  Menasce and Almeida [12] provide 

practical guidance in development of closed and open queuing network models of 

Internet-based processing and communications systems – similar in architecture to the 

authentication protocol analyzed in this dissertation. We can discuss the methodology by 

which we can analyze the performance of authentication protocol in the following 

paragraphs. 

3.3 Closed Queuing Networks 

In a simple closed queuing network, (shown in the figure below), customers 

branch from one server to the next and consume resources at each stop. Each station in 

this network has queuing of customers and service demand as a result. The number of 

customers in the system determines the workload level. The calculation of queuing 

network state probabilities can be used to produce performance metrics for each queuing 

station and the system as a whole such as the average number of customers at a queue, 

the average delay time and the customer throughput. 
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Figure 2: Closed Queuing Network Model 

Mathematical derivation of the closed queuing network state probabilities can be 

obtained easily by enumerating all states and solving the set of equations representing 

balanced probabilistic flow into and out of each state. This is called global balance 

solution [10]. When the state space is extremely large, this global balance equation is 

impractical to solve.  

 If the closed queuing network meets a certain criteria, it has the “product form” 

property [14]. In a product form network, the probability that the system is in a given 

state N=(n1, n2, …, nk) representing the number of customers at all K servers is 

proportional to the product of the marginal probabilities Pi(ni) that server I has ni 

Network 

Clients
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customers. The product form network has an efficient solution, even for large numbers of 

servers and customers [35,36]. The criteria required to ensure product form have been 

widely studied. The definitive required assumptions are called the BCMP conditions after 

the authors Baskett, Chandy, Muntz and Palacios [14]. BCMP requires that: 

• The scheduling disciplines at each service station are first-come-first-serve 

(FCFS), processor sharing (PS), last-come-first-served-preemptive-resume 

(LCFS-PR), or infinite server (IS). 

• The service times at a FCFS server must be exponentially distributed and 

same for all customers. This restriction does not apply to the other queuing 

disciplines. 

• The service time at a FCFS server is either independent of queue length or 

depends on the length of the queue only. This restriction is relaxed for the 

other queuing disciplines, but there are still restrictions. 

A typical queuing analyst may desire to model situations in which different 

customers waiting at a queuing station have a different mean service times, or different 

branching characteristics upon departure from a station. This situation to be modeled 

requires the introduction of classes of customers and the ability of customers to switch 

from one class to another. Bruell and Balbo [12] have generalized the Mean Value 

Analysis (MVA) algorithm to allow for these features.  
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3.4 Methodology 

The methodology supports the analysis of the performance characteristics of 

authentication protocols over a wide range of operational conditions. At a high level, the 

methodology follows standard practices for conducting a performance modeling analysis: 

construct the model, validate the model, vary modeling parameters, and analyze the 

results. However, it is important to accommodate the unique characteristics of security 

protocols in implementing the details of each step. 

  

 The methodology follows three high-level steps: 

1. Construct a closed queuing network model that reflects authentication protocol 

performance. 

2. Validate the model. 

3. Conduct “what if analysis” 

In order to give the methodology the flexibility to model a wide range of operational 

parameters in the protocol, the queuing network solution method was chosen and it 

should be able to accommodate large number of users and queuing servers, support 

the mix of service times characterized by the multi-class formulation and there by 

provide a computationally efficient projection of performance metrics. The MVA 

method can meet the criteria for our purpose. For modeling clients or networks, a 

fixed delay queuing server was thought to be appropriate. We assumed that the client 

is not a shared resource and will not queue multiple customer requests. We coded the 
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AMVA algorithm for multiple class/ class-switching using the algorithm used by 

Harbitter and Menasce in their performance analysis.  

  

 Our proposed variant of using AES for the encryption and decryption not only 

will give us a stronger encryption, but also one that cannot be compromised and is 

faster in encryption and decryption. Variable key length and Variable block length 

option provided to us by AES can be used to change the encryption and decryption on 

the fly based on the networks authenticated and hence get stronger and faster 

encryptions. 

3.5 Mean Value Analysis 

The Mean Value Analysis (MVA) algorithm [16] provides a stable, exact, 

iterative solution for closed queuing networks. It is based on three relations that hold 

for product form networks: the arrival theorem, the forced flow law and Little’s 

formula. The arrival theorem states that a new customer arriving at a queuing station 

will join a line that has the same average length as the total average length of the 

same queuing station in a network with one less customer. The forced flow relates the 

system throughput to the throughput for individual queuing stations. Little’s formula 

states that the average number of customers in line at a queuing station is equal to the 

arrival rate to the station time the average wait for service. These theorems can be 

combined to derive the four equations behind the iterative MVA method: 

Wi(n)   = si + siLi(n-1)                                          (3.1) 

       Y0(n)  = n/(Sigma viWi(n))                                  (3.2) 
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 Yi(n)   = Yo(n)Vi                                                  (3.3) 

  Li(n)   = Yi(n)Wi(n)                                             (3.4) 

Where: 

     Wi(n) = the mean delay at server i when there are n customers in the system 

      Si       = the mean service time at server i 

      Li(n)   = the mean number of customers at server I when there are n customers 

in    the system. 

       Yo(n)  = the average system throughput when there are n customers in the 

system 

       n         = the number of customers in the system 

        K        = the number of devices in the system 

        Vi        = the average number of visits made to server I in one cycle through 

the system 

        Yi(n)   = the average throughput at server I when there are n customers in the 

system 

Equation 3.1 states the arrival theorem. Equation 3.2 is Little’s formula applied to 

the entire system. Equation 3.3 is the forced flow law. Finally, equation 3.4 is Little’s 

formula for each queuing station. Note that equation 3.1 requires information from a 

state with one less customer than the current state – the MVA algorithm is iterative. 

The performance measures for the full system are computed by iterating equations 3.1 
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through 3.4 for all K devices in the systems, starting from n = 0 up to the total 

number of customers. 

For large numbers of customers, completing all of the MVA iterations may be 

compute intensive, especially when there are different classes of customers. Bard and 

Schweitzer [17] have developed an approximate MVA algorithm (AVMA) that 

eliminates the requirements to iterate on the number of customers. AMVA replaces 

equations 3.1 (i.e., the equation that requires the result from the previous iteration on 

the number in system) with an approximation: 

Wi = si +{(n-1)/n}siLi                                       (3.5) 

In equation 3.5, Wi, si and Li are independent of the iteration on the number in 

system – they represent their final MVA values (i.e., after the MVA iterations are 

complete). Effectively, AVMA approximates the number at a server when there are n-

1 customers in the system {(n-1)/n]Li. This estimates the requirement to iterate on 

customer count. Instead, the AMVA equations are solved successively until the 

difference in consecutive estimates of Li is less that some threshold value, e. 

Agarawal [9] has proven that AMVA, for a single class network, always converges. 
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3.5 Program Description Language (PDL) – AMVA Algorithm

AMVA() // AMVA Algorithm 

Begin: 

//INPUTS 

Input starting number of customers in each class 

Input the visit ratios v(I,r) for servers I and classes r 

Input server queuing types ServerType(i) – Delay for PS 

Input service time for each server and class s(I,r) 

Input assignment of classes to ECs 

//INITIALIZATIONS 

//Calculate visit ratios v*(I,q) for the ECs 

Do for all servers I, ECs q, and classes r in EC q; 

 V*(I,q) = (SUMover r in EC q(v(I, r)))/(SUMover r in EC q (v(0,r))); 

EndDo; 

// Calculate alpha(i,r)’s 

Do for all servers i, Ecs q and classes r in EC q; 

 Alpha(I,r) = v(I,r)/SUMover s(v(I,s)); 

EndDo; 

//Calculate the service time s*(I,q) for the ECs 

Do for all servers I, ECs q and classes r in EC q; 

 S*(I,q) = SUMover r in EC q(s(I,r)); 

EndDo; 

//initialize n*estimate (I,q)’s 

n*estimate(i,q) = the sum of the customer count for each server i and class member of EC q; 
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//Main Calculation 

epsilonCheck = FALSE; 

Do while (NOT(epsilonCheck)); 

 SOLVE(n*, n*estimate, w*, s*, x*); 

If(the difference between all n*(i) and n*estimate(i) is less than epsilon) 

 epsilonCheck = TRUE; 

EndDo; 

//Calculate Class Level statistics from EC Statistics 

Do for all servers I, ECs q, and classes r; 

 if(serverType(i) = “Delay” then w(I,r) = s(I,r); 

else w(i,r) = s(I,r) * (1 + SUMover q(n*(i,q)) + (n*(i,q’) -1)); 

x(i,r) = alpha(i,r) *x*(1,q’)*v*(i,q); //where class r is a member of EC q’ 

EndDo; 

EndMain; 

Procedure SOLVE(n*, n*estimate, w*, s*, x*) 

 //update queue length estimates to latest value 

 Do for all servers I and ECs q; 

 n*(i,q) = n*estimate(i,q); 

 EndDo; 

  

 //Calculate wait time 

 Do for all servers i and Ecs q; 

  If ServerType(i) = “delay” Then w*(i,q)  = s(i,q); 

  Else w*(i,q) = s*(i,q) * (1+(n*(i,q)-1)/n*(i,q)); 

            X*(0,q) = Nq(q)/SUMover i(w*(i,q)*v*(i,q)); 

           EndDo; 

Do for all devices I and ECs q; 

n*estimate(i,q) = x*(1,q)*w*(i,q)*v*(i,q); 

 EndDo; 

EndProc; 
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Chapter 4 

Setup and Simulation 

To investigate the performance aforementioned we created classes (C++) for the 

various encryption algorithms in question and formed a skeleton implementation of the 

protocol. We then used a closed network queuing model to simulate the authentication 

process by changing the various parameters to get close to accurate results. 

  4.1 The Queuing Model 

The KDCs, application server, communication networks and client workstations 

are finite resources that process workload as Kerberos authentication transactions 

execute. We built a closed queuing network model to represent each resource used by the 

protocols. The setup anticipates that the local KDC may be connected to the client by a 

local area network (LAN), and the remote KDC and application server may be connected 

via a wide area network (WAN). The validated model will use a LAN to connect all 

KDCs and servers, matching the test bed configuration. 

 Kerberos though available freely to configure ourselves on our servers was not 

used in entirety for this performance modeling. We built a ‘skeleton’ implementation of 

the protocol. We developed the skeleton in C++ and used the Karns’ DES/3DES library 
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[8] for symmetric key encryption. We also used the Brian Gladman’s [24] C++ version of 

AES library for our evaluation.  

 We implemented the KDCs one on Microsoft Windows 2000 and one on 

Gentoo Linux server. The application server was also implemented on Microsoft 

Windows 2000 and on Mac OS X. We had clients on Windows XP and Solaris for X86. 

We did not use any operating-system specific extensions in our programs. The client 

process steps through the standard Kerberos authentication message sequence to request 

service from an application server in a local or remote realm. The primary purpose of the 

skeleton software on the client is to issue requests periodically, quickly confirm the 

validity of the response and timestamp the transaction to report response time statistics. 

The client side processing has been simplified to focus on the encryption process and 

decryption process on the KDCs and the application servers. The client process will loop 

through many transactions for the purpose of reporting average response time statistics. 
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Figure 3: Topology of a two –realm Kerberos closed queuing model 

The above figure shows as a sample of how the two-realm close queuing model 

was setup in our simulation. 

4.2 Setup 

 We configured the client, KDCs and application server implementations to 

perform all operations with 192 Bit keys in 3DES and also with 192 bit key and block 

size. The total number of authentications was recorded on each side for a transaction. The 

transaction phase of the protocol was recorded in steps as shown below 
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Client requests TGT 

Local KDC responds 

Client requests remote TGT 

Local KDC transacts with remote KDC 

Client requests service ticket from remote KDC 

Remote KDC responds 

Client authenticates to remote application server. 

Figure 4: Transaction Phase for a cross realm authentication 

The above figure has the steps in which the Kerberos authentication across two 

realms would happen. The following figure is the setup in our test bed illustrating this 

cross realm simulation that we did. 
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Figure 5: Test Bed setup for the cross realm authentication 

The clients in this setup where Microsoft Windows XP machines and the local KDC was 

a windows 2000 server and the remote KDC was a Linux server running KDC on it and 

the application server was also a Windows 2000 Server machine. 

4.3 Simulation 

A single process was set to run on KDC to accept client requests in UDP 

datagram and use one of the encrypt algorithms on each run to authenticate the 

requests locally and also cross-authenticate requests with remote KDC. Two 

processes run on the remote KDC: one waiting for standard Kerberos requests 

arriving as UDP datagram, and the other opens up a TCP listening socket and 

waits for the remote requests from KDCs. All KDC and application server 

processes are multi-threaded; when they receive a message, they dispatch a thread 

to process and respond to the request. In the step of transaction where the client 

authenticates to the application server, it uses a ticket received from the local or 

remote KDC appropriately. 
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Figure 6: Authentication Steps in the Simulation 

The above figure illustrates the authentication steps setup in the simulation for the test.  

The client first requests the local KDC with AS-REQ/REP and then the KDC 

authenticates and responds with the ticket grant TG-REQ. The client takes the ticket to 

the application server with an AP-REQ and the server decrypts and provides service to 

the client. Following are the sequences of authentication in the setup. 

Client Workstation 

Kerberos 

Client 

Local KDC 

KDC Process 

Application Server 

Application Server Process 

AS-REQ/REP 

Thread

TG-REQ/REP 

Thread

AP-REQ/REP Thread 
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The above sequence diagram shows the step at which the initial request is made by the 

client to the KDC server. The first encryption happens at this point. The KDC however at 

this point only provides the ticket granting service. 
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Figure 8 Client using the Session Ticket to request service from Server 

The above figure illustrates the next step at which the client then deciphers the 

ticket it got from the KDC and then uses the session ticket provided by the KDC to 

request for service from the application server. Now there is one more deciphering at the 

Servers end to authenticate the ticket provided by the client. And if the mutual 

authentication of Kerberos is desired by the implementers, then there can be another 
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authentication from the client side to authenticate the server so that he can know he is 

talking to the server he thinks to be. 

Clients were programmed to make several thousand requests to the local 

application servers and several thousand requests to the remote application servers. The 

response time for each authentication was noted down and also the total throughput time 

for each request on the whole was noted down. The number of clients was increased for 

each run and also the depth of the remote access to the KDC was also changed for each 

runs. Data was collected from the client programs, KDC and the application server 

programs. The analysis of the simulation and the results are discussed in the following 

chapter. 
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Chapter 5

Analysis and Results 

We used the validated model to investigate the performance of the protocol based 

on the encryption algorithms. We increased the number of application servers and we 

found that as we increased the number, the number of ‘visits’ made to the corresponding 

servers in each transaction also increases. This means the number of 

encryption/decryption process also increases with each increased step. On the other hand 

when we tested the access to local servers, the number of encryptions is always constant 

due to a single step authentication process. So the response time of the protocol 

authentication when number of clients was increased was calculated with this protocol 

variant. 

5.1 Charts and Analysis 

All the collected data from the simulation was transported the Microsoft Excel 

Charts. We analyze the performance of the proposed variant of Kerberos versus the 3DES 

version. The following chart provides the comparative performance with respect to the 

total throughput time of the authentication itself within a local realm. 



 41

Response time of Local Authentication

0

50000

100000

150000

200000

250000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

xTimes 5000 requests per minute

n
a

n
o

S
e

c
s

AES - 192 Single Realm 3DES Single Realm

Figure 9: Comparison of Response time of Local Server transaction 

From the above figure it is clearly evident that the AES takes 50% less time to 

authenticate users when compared to Triple DES on a 192 bit key length AES. The 

following chart on the other hand shows the total response time for cross authentication 

of servers in Kerberos based on our implementation. Again the comparison is between 

Triple DES and a 192 bit key length AES. 

Response time is the elapsed time between the start of the request made by the 

client to the KDC and the time the application server authenticates the client’s ticket to 

grant service in our model. This would include the entire authentication process including 

cross realm authentication with other KDC and application servers when needed. 



 42

Response Time for Cross Authentications

0

1000

2000

3000

4000

5000

6000

7000

8000

1 2 3 4 5 6 7

Number of Server Hops

T
im

e
 i

n
 n

a
n

o
S

e
c

s

3DES Cross Authentication AES - 192 Cross Authentication AES Expected Result

Figure 10: Comparison of Response Time for Cross Server Authentication 

Once again the above figure shows that AES performed close to expectations. 

However we believe that on a complete implementation of the Kerberos with more tuning 

based on the hardware used, the results could be even better. We based our expectations 

on the Approximate Mean Value Analysis we used in our queuing theory and the Crypto 

++ benchmarks from Dai.W, [2] for the encryption algorithms that we use. 

  
To explore the relationship between the protocol and the encryption algorithm 

used, we reran the models with collecting the encryption and decryption times. We did 

not change the configurations of our servers or KDC. Our model accounts only for the 

authentication process and we did not consider the network workload in our sampling. 

Since a significant portion of the authentication process consists of encryption and 
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decryption, we analyzed the performance of the same.  The data we got is shown in the 

chart below. 
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Figure 11: Comparison of Encryption time of two algorithms with Kerberos 

As we can clearly see above, this chart also proves that AES proves to be faster in 

encryptions than its competitor 3DES. Since the designers of 3DES want the algorithm to 

be backward compatible with DES, they had to do a decryption in between two 

encryptions for 3DES encryption and reversed the process for decryption. In 3DES, so 

during decryption, the process is to decrypt, encrypt and then decrypt. This makes 

decryptions also to be slower on the algorithm when compared to AES. We tried to limit 

the bandwidth of our internal network setup to 10Mbps and still got similar results. 
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We have demonstrated, through the use of validated analytical queuing model, the 

quantitative performance differences between the two variants of Kerberos. Our analysis 

shows that  

1. Given KDCs and application servers of approximately equal capacity, AES 

variant outperforms the 3DES variant for authenticating to application server 

in the same realm. We compared the response time that the Kerberos setup 

took to completely authenticate the client and provide application service to 

him. 

2. Our observation on authentication response time for cross-realm servers also 

yielded that AES variant was faster than the 3DES variant. We maintained the 

capacity of application servers to be equal even when in cross-realm mode. 

3. Comparing only the encryption time, with controlled environment of all the 

variables, we still found that AES variant was faster in authentication than 

3DES variant. Decryption times were also compared and found to be faster in 

AES variant. 

At the end of our analysis, we see that AES remains the preferred cryptic 

algorithm for Kerberos authentication protocol as it provides better performance 

combined with better cryptography.
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Chapter 6

Conclusion and Future Work 

6.1 Conclusion 

Kerberos has proven to be a very good network authentication protocol and is 

being used by many vendors in their products in the recent years. With the introduction of 

AES, Kerberos should be even better than what it is now and provide stronger and secure 

network authentication. We have demonstrated, through the use of validated analytical 

models, the performance between the two variants of the protocol: 3DES and AES. Our 

analysis shows that: 

• Given KDCs and application servers of approximately equal capacity, the AES 

outperforms the simpler protocol 3DES for authenticating to more than one 

application server in local or remote realm. 

• Speeding up the application server relative to KDCs  with improving the block 

and key length of AES, provides better throughput for high range authentication 

and also greatly improves the response times. 

• We were also able to tune the KDCs to provide multiple authentications for 

remote realms with faster response time using the minimal key and block length 

in AES. 

We believe that the flexibility provided by AES to the encryption options in the 

protocol enables us to tune the system based on the individual requirements of the 

network authentication and hence provide a strong and safe protocol. 
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6.2 Future Work 

 What we have done here is a low level analysis on the encryption options the 

Kerberos authentication protocol can have with the availability of AES. Our findings can 

be used to guide a high-level network authentication protocol that can combine the power 

and flexibility of AES to improve performance on the whole. Use of such a high-level 

protocol with AES would provide flexibility to the designers of security networks in 

small and large scale organizations to tune the protocol. As there is already a request to 

design the next version of Kerberos with AES included, this analysis would be of great 

help to compare the performance of the two variants. 
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Appendix A 

Glossary 

Kerberos – The network authentication protocol developed by MIT as a part of Athena 

project. 

PKI – Public Key Infrastructure is the combination of digital certificates, public-key 

cryptography and certificate authorities into total network security architecture. 

KDC – Key Distribution Center, it acts as an admin to authorize and authenticate request 

from clients within the local realm and also authorize requests from remote realms. 

Authenticators -  A simple protocol that uses secret key authentication when someone 

outside a communications door wants to get in. To gain entry the person presents a piece 

of information encrypted in the secret key. 

Long-term Key – The cryptographic key stored by the KDC for each principal and that 

is exchanged between the security principal and the KDC is known as Long-term key. In 

most implementations it’s derived from the user’s logon password. 

Session key -  When a client wants to access a server for information, it sends request to 

KDC and the KDC distributes a unique short-term session key for the two parties when 

they authenticate each other. The server’s copy of the session key is encrypted in the 

server’s long-term key. The client’s copy of the session key is encrypted in the client’s 

long-term key. 

TGT -  Ticket-Granting Ticket is a special session ticket that KDC returns to the client. 

The TGT is encrypted in the KDC’s long-term key. And the TGT also contains the 

client’s session key that it can use to communicate to the KDC 

AES – Advanced Encryption standard is a block cipher that was designed by Joan 

Daemen and Vincent Rijmen as a candidate algorithm. The cipher is discussed in detail in 

this document.
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